9/x-2=5/(x^2)

Simple and best practice solution for 9/x-2=5/(x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/x-2=5/(x^2) equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

9/x-2 = 5/(x^2) // - 5/(x^2)

9/x-(5/(x^2))-2 = 0

9/x-5*x^-2-2 = 0

9*x^-1-5*x^-2-2 = 0

t_1 = x^-1

9*t_1^1-5*t_1^2-2 = 0

9*t_1-5*t_1^2-2 = 0

DELTA = 9^2-(-5*(-2)*4)

DELTA = 41

DELTA > 0

t_1 = (41^(1/2)-9)/(-5*2) or t_1 = (-41^(1/2)-9)/(-5*2)

t_1 = (41^(1/2)-9)/(-10) or t_1 = (41^(1/2)+9)/10

t_1 = (41^(1/2)-9)/(-10)

x^-1-((41^(1/2)-9)/(-10)) = 0

1*x^-1 = (41^(1/2)-9)/(-10) // : 1

x^-1 = (41^(1/2)-9)/(-10)

-1 < 0

1/(x^1) = (41^(1/2)-9)/(-10) // * x^1

1 = ((41^(1/2)-9)/(-10))*x^1 // : (41^(1/2)-9)/(-10)

-10*(41^(1/2)-9)^-1 = x^1

x = -10*(41^(1/2)-9)^-1

t_1 = (41^(1/2)+9)/10

x^-1-((41^(1/2)+9)/10) = 0

1*x^-1 = (41^(1/2)+9)/10 // : 1

x^-1 = (41^(1/2)+9)/10

-1 < 0

1/(x^1) = (41^(1/2)+9)/10 // * x^1

1 = ((41^(1/2)+9)/10)*x^1 // : (41^(1/2)+9)/10

10*(41^(1/2)+9)^-1 = x^1

x = 10*(41^(1/2)+9)^-1

x in { -10*(41^(1/2)-9)^-1, 10*(41^(1/2)+9)^-1 }

See similar equations:

| 5/1=20/m | | x^2-18x+81=25 | | 6x-7/5=-5 | | 46+(-2(3))= | | -3(w-5)+8w+2= | | -1(-1.5)+8.5= | | 2/3+1/4-4/7 | | n-29=-35 | | (x-9)(7x+1)=0 | | 5y^2+15y+4=2y+10 | | x+1/5=-2/15 | | P-14=17 | | 7-2/5+x=364/5 | | -(5.3)+8.5= | | -9n-7+3n= | | 11/6k=1/14-13/15 | | -n-7+3n= | | 3x/4-x/3+5=5x/6 | | -(-1.5)+8.5= | | 3x^2-12x-6=0 | | 2n+8-n=20 | | 3x^2+8ix+3=0 | | x^6-256x^2= | | a-225=0 | | 2t^2+4t=1 | | 5(-5-3/4y)=-65/2 | | (-12)+8.5= | | 15.36=6u | | 4(3x-3)-5(x+4)=-4 | | 2x+9/3=8-3x | | 64-9(-3)= | | 5x-2/3=x/4 |

Equations solver categories